Sains
Malaysiana 54(3)(2025): 757-767
http://doi.org/10.17576/jsm-2025-5403-12
A TaqMan Duplex
Quantitative PCR Method for Detecting Klebsiella pneumoniae has been Developed
Based on Pan-Genome Analysis
(Kaedah PCR
Kuantitatif Dupleks TaqMan untuk Mengesan Klebsiella pneumoniae telah
Dibangunkan Berdasarkan Analisis Pan-Genom)
ZENGHUI LI,
MINGMING HUA, XINYU LIU, YI WANG, MENGMENG KONG, ZHENG HU & BO YANG*
A National “111”
Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of
Fermentation Engineering (Ministry of Education), School of Life and Health
Sciences, Hubei
University of Technology, Wuhan 430070, China
Diserahkan: 2
September 2024/Diterima: 26 November 2024
Abstract
Klebsiella
pneumoniae is a significant pathogen capable of
causing infections in the respiratory, urinary, and bloodstream. In this study,
bioinformatics-based pan-genome analysis identified specific and conserved LptD
and MerR protein gene sequences in K. pneumoniae.
Based on these sequences, specific primers and probes were designed, and the
reaction system and conditions were optimized to establish a TaqMan probe-based
duplex real-time quantitative PCR method for detecting K. pneumoniae. The method was tested on genomic DNA from 14 common pathogens and negative
controls. The results showed that only the genomic DNA of K. pneumoniae was positive, while all other samples were negative. The detection limits for LptD
and MerR gene-positive standard plasmid DNA were 5.28 × 101 copies/μL
and 5.78 × 101 copies/μL, respectively, and the coefficient of
variation for Ct values between intra- and inter-gene groups was less than 3%.
These results indicate that the established TaqMan probe-based duplex real-time
quantitative PCR method can specifically and rapidly detect K. pneumoniae,
which is of significant importance for clinical diagnosis and treatment.
Keywords: Duplex quantitative PCR; Klebsiella
pneumoniae; LptD gene; MerR gene; pan-genome analysis
Abstrak
Klebsiella
pneumoniae adalah patogen yang signifikan dan mampu menyebabkan jangkitan pada sistem
pernafasan, sistem kencing dan aliran darah. Dalam kajian ini, analisis
pan-genom berasaskan bioinformatik telah mengenal pasti urutan gen protein MerR
dan LptD yang khusus dan terpelihara dalam K. pneumoniae. Berdasarkan
urutan ini, primer dan prob khusus telah direka bentuk dan sistem serta syarat
reaksi telah dioptimumkan untuk membangunkan kaedah PCR kuantitatif masa nyata
dwi-fluoresen TaqMan untuk mengesan K. pneumoniae. Kaedah ini telah
diuji pada DNA genom daripada 14 patogen biasa dan kawalan negatif. Keputusan
menunjukkan bahawa hanya DNA genom K. pneumoniae yang didapati positif,
manakala semua sampel lain adalah negatif. Had pengesanan untuk DNA plasmid piawai
positif gen LptD dan MerR masing-masing adalah 5.28 × 101 salinan/μL dan 5.78 × 101 salinan/μL dan pekali variasi
untuk nilai Ct antara kumpulan intra- dan inter-gen adalah kurang daripada 3%.
Keputusan ini menunjukkan bahawa kaedah PCR kuantitatif masa nyata
dwi-fluoresen TaqMan yang dibangunkan boleh mengesan K. pneumoniae secara khusus dan pantas, yang mempunyai kepentingan besar untuk diagnosis dan
rawatan klinikal.
Kata
kunci: Analisis
pan-genom; gen MerR; gen LptD; Klebsiella pneumoniae; PCR kuantitatif
dwi
RUJUKAN
Abdeta, A., Bitew, A., Fentaw, S., Tsige,
E., Assefa, D., Lejisa, T., Kefyalew, Y., Tigabu, E. & Evans, M. 2021.
Phenotypic characterization of carbapenem non-susceptible Gram-negative bacilli
isolated from clinical specimens. PLoS
ONE 16(12): e0256556.
Bengoechea, J.A. & Pessoa, J.S. 2019. Klebsiella
pneumoniae infection biology: Living to counteract host defences. Fems Microbiology Reviews 43(2):
123-144.
Benson, D.A., Cavanaugh, M., Clark, K.,
Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. & Sayers, E.W. 2013. GenBank. Nucleic Acids Res. 41(Database
issue): D36-42.
Chaudhari, N.M., Gupta, V.K. & Dutta,
C. 2016. BPGA- An ultra-fast pan-genome analysis pipeline. Scientific
Reports 6(1): 24373.
Costa, S.S., Guimarães, L.C., Silva, A.,
Soares, S.C. & Baraúna, R.A. 2020. First steps in the analysis of
prokaryotic pan-genomes. Bioinform. Biol.
Insights 14: 1177932220938064.
De Oliveira, D.M.P., Forde, B.M., Kidd,
T.J., Harris, P.N.A., Schembri, M.A., Beatson, S.A., Paterson, D.L. &
Walker, M.J. 2020. Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews 33(3): e00181-19.
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li,
W. 2012. CD-HIT: Accelerated for clustering the next-generation sequencing
data. Bioinformatics 28(23): 3150-2.
Gadsby, N.J., McHugh, M.P., Russell, C.D.,
Mark, H., Conway Morris, A., Laurenson, I.F., Hill, A.T. & Templeton, K.E.
2015. Development of two real-time multiplex PCR assays for the detection and
quantification of eight key bacterial pathogens in lower respiratory tract
infections. Clin. Microbiol.
Infect. 21(8): 788.e1-788.e13.
Huang, Y., Li, J., Wang, Q., Tang, K.
& Li, C. 2022. Rapid detection of KPC-producing Klebsiella pneumoniae in China based on MALDI-TOF MS. J.
Microbiol. Methods 192: 106385.
Keshta, A.S., Elamin, N., Hasan, M.R.,
Pérez-López, A., Roscoe, D., Tang, P. & Suleiman, M. 2021. Evaluation of
rapid immunochromatographic tests for the direct detection of extended spectrum
beta-lactamases and carbapenemases in enterobacterales isolated from positive
blood cultures. Microbiol. Spectr.
9(3): e0078521.
Kim, H., Jang, J.H., Jung, I.Y. & Cho,
J.H. 2022. A novel peptide as a specific and selective probe for Klebsiella
pneumoniae detection. Biosensors 12(3): 153.
Kurupati, P., Chow, C., Kumarasinghe, G.
& Poh, C.L. 2004. Rapid detection of Klebsiella pneumoniae from
blood culture bottles by real-time PCR. J.
Clin. Microbiol. 42(3): 1337-1340.
Lee, A.H.Y., Porto, W.F., de Faria Jr.,
C., Dias, S.C., Alencar, S.A., Pickard, D.J., Hancock, R.E.W. & Franco,
O.L. 2021. Genomic insights into the diversity, virulence and resistance of Klebsiella
pneumoniae extensively drug resistant clinical isolates. Microbial
Genomics 7(8): 000613.
Liu, Y., Liu, C., Zheng, W.,
Zhang, X., Yu, J., Gao, Q., Hou, Y. & Huang, X. 2008. PCR detection of Klebsiella
pneumoniae in infant formula based on 16S-23S internal transcribed spacer. International
Journal of Food Microbiology 125(3): 230-235.
Logan, L.K. & Weinstein, R.A. 2017.
The epidemiology of carbapenem-resistant enterobacteriaceae: The impact and
evolution of a global menace. Journal of
Infectious Diseases 215: S28-S36.
Ma, H., Xu, J., Zhang, Y., Zhang, R. &
Wu, J. 2024. Relevance and antimicrobial resistance profile of Klebsiella
pneumoniae in neonatal sepsis. J.
Matern. Fetal Neonatal Med. 37(1): 2327828.
Marí-Almirall, M., Ferrando, N.,
Fernández, M.J., Cosgaya, C., Viñes, J., Rubio, E., Cuscó, A., Muñoz, L.,
Pellice, M., Vergara, A., Campo, I., Rodríguez-Serna, L., Santana, G., Del Río,
A., Francino, O., Ciruela, P., Ballester, F., Marco, F., Martínez, J.A.,
Soriano, Á., Pitart, C., Vila, J. & Roca, I. 2021. Clonal spread and intra-
and inter-species plasmid dissemination associated with Klebsiella
pneumoniae carbapenemase-producing enterobacterales during a hospital
outbreak in Barcelona, Spain. Front Microbiol. 12: 781127.
Navarro, E., Serrano-Heras, G., Castaño,
M.J. & Solera, J. 2015. Real-time PCR detection chemistry. Clin. Chim. Acta 439: 231-250.
Navon-Venezia, S., Kondratyeva, K. &
Carattoli, A. 2017. Klebsiella pneumoniae: A major worldwide source and
shuttle for antibiotic resistance. Fems
Microbiology Reviews 41(3): 252-275.
Paczosa, M.K. & Mecsas, J. 2016. Klebsiella
pneumoniae: Going on the offense with a strong defense. Microbiology and Molecular Biology Reviews 80(3): 629-661.
Pitout, J.D.D., Nordmann, P. & Poirel,
L. 2015. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen
set for global nosocomial dominance. Antimicrobial
Agents and Chemotherapy 59(10): 5873-5884.
Romano, K.P. & Hung, D.T. 2023.
Targeting LPS biosynthesis and transport in Gram-negative bacteria in the era
of multi-drug resistance. Biochimica et Biophysica Acta (BBA)-Molecular Cell
Research 1870(3): 119407.
Romero-Alvarez, D., Garzon-Chavez, D.,
Espinosa, F., Ligña, E., Teran, E., Mora, F., Espin, E., Albán, C., Galarza,
J.M. & Reyes, J. 2021. Cycle threshold values in the context of multiple
RT-PCR testing for SARS-CoV-2. Risk
Management and Healthcare Policy 14: 1311-1317.
Russo, T.A. & Marr, C.M. 2019.
Hypervirulent Klebsiella pneumoniae. Clinical Microbiology Reviews 32(3): 10-1128.
Togawa, A., Toh, H., Onozawa, K.,
Yoshimura, M., Tokushige, C., Shimono, N., Takata, T. & Tamura, K. 2015.
Influence of the bacterial phenotypes on the clinical manifestations in Klebsiella
pneumoniae bacteremia patients: A retrospective cohort study. Journal of
Infection and Chemotherapy 21(7): 531-537.
Tulin, G., Figueroa, N.R., Checa, S.K.
& Soncini, F.C. 2024. The multifarious MerR family of transcriptional
regulators. IEEE/ACM Trans.
Comput. Biol. Bioinform. 20(5):
2874-2888.
Wei, Z.G., Chen, X., Zhang, X.D.,
Zhang, H., Fan, X.G., Gao, H.Y., Liu, F. & Qian, Y. 2023. Comparison of
methods for biological sequence clustering. IEEE/ACM Trans. Comput. Biol.
Bioinform. 20(5): 2874-2888.
Ye, J., Coulouris, G., Zaretskaya, I.,
Cutcutache, I., Rozen, S. & Madden, T.L. 2012. Primer-BLAST: A tool to
design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 134.
Zha, Z., Li, C., Li, W., Ye, Z. & Pan,
J. 2016. LptD is a promising vaccine antigen and potential immunotherapeutic
target for protection against Vibrio species infection. Scientific Reports 6(1): 38577.
Zhang, L., Xiao, Y., Zhang, G., Li, H.,
Zhao, J., Chen, M., Chen, F., Liu, L., Li, Y., Peng, L., Zhao, F., Yang, D.,
Wen, Z., Wu, L., Wu, S., Sun, Y., Wang, Y., Chen, L., Wang, X., Wang, L., Li,
W., Qiu, H., Chen, Y., Gao, Z., Ren, L. & Wang, J. 2023. Identification of
priority pathogens for aetiological diagnosis in adults with community-acquired
pneumonia in China: A multicentre prospective study. BMC Infect. Dis. 23(1): 231. BMC Infectious Diseases 23(1):
231.
Zhu, J., Wang, T., Chen, L. & Du, H.
2021. Virulence factors in hypervirulent Klebsiella pneumoniae. Front
Microbiol. 12:
642484.
*Pengarang
untuk surat-menyurat; email: yangbo@hbut.edu.cn
|